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hadronic weak interactions:  as the weak neutral current is suppressed in
weak processes,  neutral current can only be studied in               reaction 

NN and nuclear reactions the only feasible possibilities
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hadronic weak interactions:  as the weak neutral current is suppressed in
weak processes,  neutral current can only be studied in               reaction 

NN and nuclear reactions the only feasible possibilities

↕ ↕
ΔI=1 ΔI=1/2

↕↕
symmetric ⇒ ΔI=0,2 ΔI=1 but Cabibbo suppressed

weak hadronic neutral current will dominate experiments sensitive to isovector PNC — 
the only SM current not yet isolated: led to a focus on      , which DDH predicted
would be large
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(pionless) Lagrangian, which reduces to the nonrelativistic form
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(As was done by Phillips, Schindler, and Springer [63], in Eq. (44) the factor
of 1/⇤3

� used by Girlanda has been absorbed into the coe�cients, making
them dimensional.)

Table 2: The coe�cients of the S-P PNC potential of Eq. (36) in the
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Returning to the “canonical form” of the S � P contact potential in
terms of the partial-wave operators of Eq. (36), the relationships between
the DDH, Girlanda, and Zhu forms of that potential can be summarized in
terms of coe�cients of that potential, as shown in Table 2. In using this
table it should be remembered that the DDH results include the assumption
that a one-boson exchange potential operates between strongly interacting
initial and final nuclear states. There are contributions from crossed-pion
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Largely equivalent DDH, Danilov, and Pionless EFT treatments
  
            Pionless EFT treatments
            - S. L. Zhu et al., Nucl. Phys. A748 (2005) 435
            - L. Girlanda, Phys. Rev. C77 (2008) 067001
            - D. R. Phillips, M. R. Schindler, and R. P. Springer, Nucl. Phys. A822 (2009) 1

            Danilov amplitude or contact interaction expansions
            - B. Desplanques and J. Missimer, Nucl. Phys. A300 (1978) 286
            - G. S. Danilov, Phys. Lett. 18 (1965) 40 and B35 (1971) 579

            and 1/Nc approaches
            - D. Phillips, D. Samart, and C. Schat, PRL 114 (2015) 062301
            - M. R. Schindler, R. P. Springer, and J. Vanasse, PRC 93 (2016) 025502

 



Goal for some time:  an analysis based NN, few-body observables

Recent effort at LANSCE on                                  will need to be
made more precise at the SNS

One nuclear result is important, Pγ(18F): provides our best constraint on 
ΔI=1 PNC,  usual structure uncertainties can 
be eliminated using axial-charge β decay data

Best data: 
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Theoretically:

The non-perturbative QCD at low energies
The difficult nuclear many-body problems

Cheng-Pang Liu Parity Violation in Few-Nucleon Systems

some of the most reliable constraints
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Another has been the need to combine calculations of different types, vintages

-2 0 2 4 6 8 10 12 14
f - 0.12 h 1 - 0.18 h 1

-5

0

5

10

15

20

25

30

-(
h
0
+
0.
7
h
0 )

pp

p

133Cs

19F

205Tl

18F18F
19F

pα

pp
❊

DDH

best value

-2 0 2 4 6 8 10 12 14
f - 0.12 h 1 - 0.18 h 1

-5

0

5

10

15

20

25

30

-(
h
0
+
0.
7
h
0 )

pp

p

133Cs

19F

205Tl

18F

-2 0 2 4 6 8 10 12 14
f - 0.12 h 1 - 0.18 h 1

-5

0

5

10

15

20

25

30

-(
h
0
+
0.
7
h
0 )

pp

p

133Cs

19F

205Tl

18F

Figure 1: Experimental constraints on linear combinations of isoscalar and
isovector DDH couplings (in units of 10�7), taken from the 2001 work of [37],
displaying bounds from four experiments where it is believed that theoretical
analysis uncertainties are under reasonable control: pp, p↵, 18F, and 19F. The
small shaded triangle is consistent with all four experiments. The DDH best
value point is also shown. Later we show that the data on ~p+p subsequently
obtained at TRIUMF [13] and the analysis of Ref. [54] have a significant
impact on this plot.

11

A simplified 5    2 projection, guided by
meson-exchange theory

!



❊

-2 0 2 4 6 8 10 12 14
f - 0.12 h 1 - 0.18 h 1

-5

0

5

10

15

20

25

30

-(
h
0
+
0.
7
h
0 )

pp

p

133Cs

19F

205Tl

18F18F
19F

pα

pp

DDH

best value

-2 0 2 4 6 8 10 12 14
f - 0.12 h 1 - 0.18 h 1

-5

0

5

10

15

20

25

30

-(
h
0
+
0.
7
h
0 )

pp

p

133Cs

19F

205Tl

18F

-2 0 2 4 6 8 10 12 14
f - 0.12 h 1 - 0.18 h 1

-5

0

5

10

15

20

25

30

-(
h
0
+
0.
7
h
0 )

pp

p

133Cs

19F

205Tl

18F

❊

Another has come from combining calculations of different types, vintages
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Figure 1: Experimental constraints on linear combinations of isoscalar and
isovector DDH couplings (in units of 10�7), taken from the 2001 work of [37],
displaying bounds from four experiments where it is believed that theoretical
analysis uncertainties are under reasonable control: pp, p↵, 18F, and 19F. The
small shaded triangle is consistent with all four experiments. The DDH best
value point is also shown. Later we show that the data on ~p+p subsequently
obtained at TRIUMF [13] and the analysis of Ref. [54] have a significant
impact on this plot.

11

A simplified 5    2 projection, guided by
meson-exchange theory: but proved inconsistent

!



Effectively the isoscalar/isovector 2D projection collapses to 1D

The alternative offered by the large Nc analysis argues for a different projection —
onto a space spanned by one isoscalar interaction and one isotensor



Table 2: A large-Nc hadronic PNC “Rosetta stone”: The LECs for the S-P PNC potential
of Eq. (7) are organized according to the large-Nc classification of [7]. The relationships
to the DDH potential and to the coe�cients of Girlanda’s EFT potential are shown. Note
that multiplicative factor of 2mNm2
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dimensionless coe�cients ⇤, e.g., ⇤
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DDH parameters are also shown. On computing DDH best-value equivalents and comparing
them to large-Nc expectations, one finds
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with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.
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Figure 3: LO large-Nc solutions satisfying all low-energy constraints on hadronic PNC. The
left panel provides an expanded view of the region, interior to the ellipse, with �2 < 1. The
dot marks the best-fit point. On the right the constraints from AL(~pp) at low energies (blue
boundary), AL(~pp) at 221 MeV (red), AL(~p↵) (orange), and A�(19F) (green) are shown, along
fit the combined allowed region (dashed ellipse). The experimental bands are 1�. The LECs
are given in units of 10�7.

We now express all five results discussed above in the large-Nc LEC basis, sequestering the
N2LO terms in brackets
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The LO approximation corresponds to ignoring the bracketed terms while solving the three

remaining equations for ⇤+
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2 . The best-value solution is ⇤+

0 = 717 and ⇤
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2 =

324, with a nearly vanishing �2 (reflecting the almost exact overlap of the AL(~p↵) and A�(19F)
bands). The contour of �2 = 1 (the fit has one degree of freedom) encloses the region shown
in Fig. 3.

These best values are both more than a factor of two larger than the DDH benchmark

values for ⇤+
0 and ⇤
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2 given in Eq. (19). This indicates that there may be a second
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to Fig. 1 it was assumed that the value for h2
⇢, and consequently ⇤

1S0�3P0
2 , would be good

to within the estimate reasonable range of ± 20% around the best value. But the best-value

value we found is far outside this band. In fact most of the allowed region for ⇤
1S0�3P0
2 within

the ellipse of Fig. 3 would have also been excluded from this band. Consequently it is not
surprising that there is a discrepancy between the isoscalar parameter employed in Fig. 1,
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!), and that associated with ⇤+
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Table 2: A large-Nc hadronic PNC “Rosetta stone”: The LECs for the S-P PNC potential
of Eq. (7) are organized according to the large-Nc classification of [7]. The relationships
to the DDH potential and to the coe�cients of Girlanda’s EFT potential are shown. Note
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⇢ must be applied to the Girlanda entries to obtain the
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with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.
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Figure 3: LO large-Nc solutions satisfying all low-energy constraints on hadronic PNC. The
left panel provides an expanded view of the region, interior to the ellipse, with �2 < 1. The
dot marks the best-fit point. On the right the constraints from AL(~pp) at low energies (blue
boundary), AL(~pp) at 221 MeV (red), AL(~p↵) (orange), and A�(19F) (green) are shown, along
fit the combined allowed region (dashed ellipse). The experimental bands are 1�. The LECs
are given in units of 10�7.
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These best values are both more than a factor of two larger than the DDH benchmark
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2 given in Eq. (19). This indicates that there may be a second

shortcoming in Fig. 1, from the perspective of large-Nc QCD: not only were the wrong isospin

axes used, but the marginalization that was done to remove the e↵ects of ⇤
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2 from the

band for AL(~pp) likely underestimated the associated uncertainties. In the procedures leading

to Fig. 1 it was assumed that the value for h2
⇢, and consequently ⇤
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2 , would be good

to within the estimate reasonable range of ± 20% around the best value. But the best-value

value we found is far outside this band. In fact most of the allowed region for ⇤
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2 within

the ellipse of Fig. 3 would have also been excluded from this band. Consequently it is not
surprising that there is a discrepancy between the isoscalar parameter employed in Fig. 1,
�(h0

⇢ + 0.7h0
!), and that associated with ⇤+

0 , �(h0
⇢ + 0.2h0

!).

13

Table 2: A large-Nc hadronic PNC “Rosetta stone”: The LECs for the S-P PNC potential
of Eq. (7) are organized according to the large-Nc classification of [7]. The relationships
to the DDH potential and to the coe�cients of Girlanda’s EFT potential are shown. Note
that multiplicative factor of 2mNm2

⇢ must be applied to the Girlanda entries to obtain the

dimensionless coe�cients ⇤, e.g., ⇤
1S0�3P0
1 = G2 [2mNm2

⇢].

Coe↵ DDH Girlanda Large Nc

⇤+
0 ⌘ 3

4⇤
3S1�1P1
0 + 1

4⇤
1S0�3P0
0 �g⇢h

0
⇢(

1
2+

5
2�⇢) � g!h0

!(12 -
1
2�!) 2G1 + G̃1 ⇠ Nc

⇤�
0 ⌘ 1

4⇤
3S1�1P1
0 � 3

4⇤
1S0�3P0
0 g!h0

!(32 + �!) + 3
2g⇢h

0
⇢ �G1 � 2G̃1 ⇠ 1/Nc

⇤
1S0�3P0
1 �g⇢h

1
⇢(2+�⇢) � g!h1

!(2+�!) G2 ⇠ sin2 ✓w

⇤
3S1�3P1
1

1p
2
g⇡NNh1

⇡

⇣
m⇢

m⇡

⌘2
+ g⇢(h1

⇢ � h10
⇢ ) � g!h1

! 2G6 ⇠ sin2 ✓w

⇤
1S0�3P0
2 �g⇢h

2
⇢(2 + �⇢) �2

p
6G5 ⇠ Nc

DDH parameters are also shown. On computing DDH best-value equivalents and comparing
them to large-Nc expectations, one finds

(
DDH⇤+

0

DDH⇤
1S0�3P0
2

)
=

(
319

151

) 8
><

>:

DDH⇤�
0

DDH⇤
1S0�3P0
1

DDH⇤
3S1�3P1
1

9
>=

>;
=

8
><

>:

�70

21

1340

9
>=

>;
, (19)

with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.
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The LO approximation corresponds to ignoring the bracketed terms while solving the three

remaining equations for ⇤+
0 and ⇤
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0 = 717 and ⇤
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2 =

324, with a nearly vanishing �2 (reflecting the almost exact overlap of the AL(~p↵) and A�(19F)
bands). The contour of �2 = 1 (the fit has one degree of freedom) encloses the region shown
in Fig. 3.

These best values are both more than a factor of two larger than the DDH benchmark

values for ⇤+
0 and ⇤

1S0�3P0
2 given in Eq. (19). This indicates that there may be a second

shortcoming in Fig. 1, from the perspective of large-Nc QCD: not only were the wrong isospin

axes used, but the marginalization that was done to remove the e↵ects of ⇤
1S0�3P0
2 from the

band for AL(~pp) likely underestimated the associated uncertainties. In the procedures leading

to Fig. 1 it was assumed that the value for h2
⇢, and consequently ⇤

1S0�3P0
2 , would be good

to within the estimate reasonable range of ± 20% around the best value. But the best-value

value we found is far outside this band. In fact most of the allowed region for ⇤
1S0�3P0
2 within

the ellipse of Fig. 3 would have also been excluded from this band. Consequently it is not
surprising that there is a discrepancy between the isoscalar parameter employed in Fig. 1,
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Table 2: A large-Nc hadronic PNC “Rosetta stone”: The LECs for the S-P PNC potential
of Eq. (7) are organized according to the large-Nc classification of [7]. The relationships
to the DDH potential and to the coe�cients of Girlanda’s EFT potential are shown. Note
that multiplicative factor of 2mNm2

⇢ must be applied to the Girlanda entries to obtain the

dimensionless coe�cients ⇤, e.g., ⇤
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1 = G2 [2mNm2

⇢].
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with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.
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Figure 3: LO large-Nc solutions satisfying all low-energy constraints on hadronic PNC. The
left panel provides an expanded view of the region, interior to the ellipse, with �2 < 1. The
dot marks the best-fit point. On the right the constraints from AL(~pp) at low energies (blue
boundary), AL(~pp) at 221 MeV (red), AL(~p↵) (orange), and A�(19F) (green) are shown, along
fit the combined allowed region (dashed ellipse). The experimental bands are 1�. The LECs
are given in units of 10�7.

We now express all five results discussed above in the large-Nc LEC basis, sequestering the
N2LO terms in brackets
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The LO approximation corresponds to ignoring the bracketed terms while solving the three
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0 and ⇤
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0 = 717 and ⇤
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2 =

324, with a nearly vanishing �2 (reflecting the almost exact overlap of the AL(~p↵) and A�(19F)
bands). The contour of �2 = 1 (the fit has one degree of freedom) encloses the region shown
in Fig. 3.

These best values are both more than a factor of two larger than the DDH benchmark

values for ⇤+
0 and ⇤
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2 given in Eq. (19). This indicates that there may be a second

shortcoming in Fig. 1, from the perspective of large-Nc QCD: not only were the wrong isospin

axes used, but the marginalization that was done to remove the e↵ects of ⇤
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band for AL(~pp) likely underestimated the associated uncertainties. In the procedures leading

to Fig. 1 it was assumed that the value for h2
⇢, and consequently ⇤
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2 , would be good

to within the estimate reasonable range of ± 20% around the best value. But the best-value

value we found is far outside this band. In fact most of the allowed region for ⇤
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2 within

the ellipse of Fig. 3 would have also been excluded from this band. Consequently it is not
surprising that there is a discrepancy between the isoscalar parameter employed in Fig. 1,
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Table 2: A large-Nc hadronic PNC “Rosetta stone”: The LECs for the S-P PNC potential
of Eq. (7) are organized according to the large-Nc classification of [7]. The relationships
to the DDH potential and to the coe�cients of Girlanda’s EFT potential are shown. Note
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with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.
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Figure 3: LO large-Nc solutions satisfying all low-energy constraints on hadronic PNC. The
left panel provides an expanded view of the region, interior to the ellipse, with �2 < 1. The
dot marks the best-fit point. On the right the constraints from AL(~pp) at low energies (blue
boundary), AL(~pp) at 221 MeV (red), AL(~p↵) (orange), and A�(19F) (green) are shown, along
fit the combined allowed region (dashed ellipse). The experimental bands are 1�. The LECs
are given in units of 10�7.

We now express all five results discussed above in the large-Nc LEC basis, sequestering the
N2LO terms in brackets
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The LO approximation corresponds to ignoring the bracketed terms while solving the three

remaining equations for ⇤+
0 and ⇤

1S0�3P0
2 . The best-value solution is ⇤+

0 = 717 and ⇤
1S0�3P0
2 =

324, with a nearly vanishing �2 (reflecting the almost exact overlap of the AL(~p↵) and A�(19F)
bands). The contour of �2 = 1 (the fit has one degree of freedom) encloses the region shown
in Fig. 3.

These best values are both more than a factor of two larger than the DDH benchmark

values for ⇤+
0 and ⇤

1S0�3P0
2 given in Eq. (19). This indicates that there may be a second

shortcoming in Fig. 1, from the perspective of large-Nc QCD: not only were the wrong isospin

axes used, but the marginalization that was done to remove the e↵ects of ⇤
1S0�3P0
2 from the

band for AL(~pp) likely underestimated the associated uncertainties. In the procedures leading

to Fig. 1 it was assumed that the value for h2
⇢, and consequently ⇤

1S0�3P0
2 , would be good

to within the estimate reasonable range of ± 20% around the best value. But the best-value

value we found is far outside this band. In fact most of the allowed region for ⇤
1S0�3P0
2 within

the ellipse of Fig. 3 would have also been excluded from this band. Consequently it is not
surprising that there is a discrepancy between the isoscalar parameter employed in Fig. 1,
�(h0

⇢ + 0.7h0
!), and that associated with ⇤+

0 , �(h0
⇢ + 0.2h0

!).
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NNLO couplings:  alters the relationship between 18F, NPDGamma       
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Figure 5: The progress in constraining the large-Nc isovector N2LO LECs that will result from
combining anticipated NPDGamma results (horizontal band) with the existing constraint from
P�(18F) (vertical band). The former assumes a central value of zero for A�(~np ! d�) and
an uncertainty determined by the experiment’s statistics, and thus assumes that the current
campaign to subtract out window-induced asymmetries will yield a final systematic uncer-
tainty well below the statistical uncertainty. Note that both isovector LECs are bounded once
NPDGamma results are combined with P�(18F), while neither is bounded without this result.
The LECs are in units of 10�7.

19F was produced using a relatively modest 0.4 µA 5 MeV polarized proton beam, the needed
statistics might be attainable.

4.2 Testing the N2LO Theory: NPDGamma and P�(18F)

A significant outcome of our work is the recognition that 1) past experiments have done a good
job in characterizing the LO large-Nc interaction – with further improvements possible in the
near term, such as that illustrated in Fig. 4 – and 2) we have already embarked on a credible
campaign to learn about the N2LO corrections. From the perspective of this second point, the

striking aspect of Eqs. (22) is that ⇤
1S0�3P0
1 and and ⇤

3S1�3P1
1 are the low-hanging fruit in

this endeavor, because we can use isospin to restrict ourselves to the �I = 1 plane in our 5D
parameter space, where no LO terms exist to mask the smaller e↵ects we seek. Furthermore,
we have already embarked on a nearly optimal program to limit or measure these parameters,
with P�(18F) and NPDGamma being ideal choices for this task.

An important question to ask is where we might stand, once NPDGamma announces its
result. To assess this we make the choice ✏ ⇠ 1, which is a possible outcome as the important
systematic e↵ects in the experiment appear to be isolated in the window subtraction, including
Al as the dominant correction. The net results that would follow from combining the bound
on P�(18F) with a NPDGamma A�(~np ! d�) result centered on zero with a final error bar of
1.3 ⇥ 10�8 is shown in Fig. 5. Note that a central value for A� other than zero would shift
the horizontal band up or down, while significant residual systematic uncertainties leading
to ✏ > 1 would broaden the band proportionately. One observes that the two experiments
are very complementary, probing di↵erent combinations of the two �I = 1 LECs. If one uses
⇤+
0 ⇠ 700 as the scale of the LO contribution, then current P�(18)F and potential NPDGamma

constraints are about a factor of three below the LO scale, or roughly at the NLO level. Thus
considerable work remains ahead, as these constraints should be improved another factor of

19
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A�(~n+ p ! d+ �)

Now complementary:  nothing is learned about NNLO couplings without both
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With things beginning to align, one can see the experimental path forward      

LO couplings:  need a 10% measurement to complement ~p+ p
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Figure 4: As in Fig. 3, but adding the impact of a future LQCD calculation of the �I = 2

amplitude ⇤
1S0�3P0
2 to ± 10%, centered on the central value from Fig. 3.

4.1 Testing the LO Theory

Despite the quality of the LO fit, there is not a lot of redundancy, especially with the constraints
from AL(~p↵) and A�(19F) being so similar. Thus an additional independent measurement sen-
sitive to the LO couplings would be valuable. Furthermore, while the value of AL(~pp) is known
to 10%, the errors on the other two experiments exceed 25%. A new measurement matching

the precision of AL(~pp), but probing a di↵erent combination of ⇤+
0 and ⇤

1S0�3P0
2 , thus could

substantially shrink the allowed ellipse shown in Fig. 3. A more precise determination of the
LO LECs would be important for future searches for N2LO LECs: in experiments where these
terms arise in combination with LO terms, even modest errors in LO parameters would obscure
the e↵ects of N2LO corrections. There do appear to be opportunities to generate new, high
quality constraints on the LO parameters.

Lattice QCD: In lattice QCD (LQCD) one solves strongly interacting problems by replacing
the continuum problem with a discretized version, a finite grid in Euclidean space-time with
periodic boundary conditions. While this precludes any direct calculation of scattering ampli-
tudes [83], the distortion of the energy levels in a finite volume can be related to low-energy
scattering parameters [84, 85, 86] using techniques developed by Lüscher [87, 88]. Most NN
scattering calculations documented in the literature were performed with nuclear sources that
placed both nucleons at the same space-time point, limiting the results to s-waves. In contrast,
applications to hadronic PNC, where p-waves are clearly essential, require the use of extended
nuclear sources, placed on the lattice in a variety of configurations that, in sum, allow one
to associate lattice eigenvalues with partial waves having good spherical symmetry. This is a
nontrivial problem given the cubic symmetry of the lattice. The first calculation of parity-odd
two-nucleon scattering using Lüscher’s method were recently performed, demonstrating the
technique [89].

There is an e↵ort underway to apply LQCD to the problem of calculating ⇤
1S0�3P0
2 [4].

Because this scattering amplitude carries �I = 2, there are no disconnected (quark loop)
contributions [90]. Thus the statistical noise in this channel should be significantly lower than
in �I = 0, 1 channels, opening up the possibility of a good LQCD “measurement” near the
physical pion mass. A calculation of hadronic PNC in the �I = 2 channel is expected to be
an order of magnitude less costly than a measurement in the �I = 1 channel. Preliminary

17

Impact of an LQCD calculation of the I=2 amplitude  (Walker-Loud talk)
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Higher partial waves 
%  For NN PV scattering: initial S-wave & final P-wave 

%  Both S and P wave phase shifts are needed 

%  Calculate S, P, D, F wave phase shifts in NN scattering first 

%  The lattice finite volume PV matrix element is related to the infinite volume using 
Lellouch-Luscher formalism 

I = 1, A1+
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Luscher formula: ΔE + i 

solid = 2 (mN
2 + pn

2)1/2 - 2mN, pn=2πn/L, non-interacting 

points = ENN(qn) – 2 mN,,  ENN(qn)= 2 (mN
2 + qn

2)1/2, interacting 

LQCD work on HPNC builds on recent efforts to build the technology to use 
                         extended nuclear sources required for calculating  NN partial
                         waves beyond s-wave 

Cubic to rotational symmetry

1S0

Higher partial waves with extended sources:
  E. Berkowitz et al. (CalLat Collab.) arXiv:1508.00886
  K. Murano et al. (HAL QCD Collab.) arXiv:1305.2293



Alternatively, can one of the existing odd-proton measurements be improved?

                                                                        Lang et al., 1985
                                                                        1.3          polarized beam
                                                                        factor of 2.5 improvement?

                                                                        Seattle 1983
                                                                        Zurich 1987

                                                                        statistics limited
                                                                        systematics ok at 10% level
                                                                        0.4        5 MeV polarized p beam 

Significant improvements in the theory possible, as well

AL(~p +4 He) : (�3.34± 0.9)⇥ 10�7

µA

A�(
19F) =

⇢
(�8.5± 2.6)⇥ 10�5

(�6.8± 1.8)⇥ 10�5

µA



Table 3: Candidate future hadronic PNC experiments, including several that have been or are
now being pursued. The LO large-Nc estimates for the observables are given.

Observable Exp. Status LO Expectation

Ap(~n +3 He ! 3H+p) ongoing �1.8 ⇥ 10�8

A�(~n + d ! t + �) 8 ⇥ 10�6 7.3 ⇥ 10�7

P�(n + p ! d + �) (1.8 ± 1.8) ⇥ 10�7 1.4 ⇥ 10�7

d�n

dz

��
parahydrogen

none 9.4 ⇥ 10�7 rad/m

d�n

dz

��
4He

(1.7 ± 9.1 ± 1.4) ⇥ 10�7 6.8 ⇥ 10�7 rad/m

AL(~p + d) (�3.5 ± 8.5) ⇥ 10�8 �4.6 ⇥ 10�8

Table 4: As in the previous table, but with the observable normalized as shown, then decom-
posed into its LO and NNLO contributions.

Normed Observable LO Expression NNLO Correction
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1S0�3P0
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h
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0 + 8.18⇤
1S0�3P0
1 + 2.27⇤

3S1�3P1
1

i

118
10�7 A� ⇤+

0 + 0.44⇤
1S0�3P0
2 �

h
1.86⇤�

0 + 0.65⇤
1S0�3P0
1 + 0.42⇤

3S1�3P1
1

i
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10�7 P� ⇤+
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dz
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1
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rad/m
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10�7

d�n

dz

���
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⇤+
0 rad/m �

h
1.61⇤�

0 + 0.92⇤
1S0�3P0
1 + 0.35⇤

3S1�3P1
1

i
rad/m

156
10�8 AL �⇤+

0 +
h
1.75⇤�

0 � 1.09⇤
1S0�3P0
1 � 1.25⇤

3S1�3P1
1

i

2 Possible future strategies

i) A lattice QCD evaluation of the couplings, beginning with measurement of the �I =

2 parameter ⇤
1S0�3P0
2 . A measurement accurate to 10% would significant narrow the

uncertainties on ⇤+
0 and ⇤

1S0�3P0
2 . This calculation is the natural first step for LQCD,

as the �I = 2 amplitude has no contributions from disconnected (quark loop) diagrams.

ii) An improved determination of the LO parameters ⇤+
0 and ⇤

1S0�3P0
2 by a modern and

higher precision measurement of the ~p↵ longitudinal analyzing power and/or the 19F
photon decay asymmetry.

iii) Alternatively, an improved determination of the LO parameters ⇤+
0 and ⇤

1S0�3P0
2 by one

of the new experiments listed in Table 4. We have noted that AL(~n + 3He ! 3H + p)
would be a particularly good choice.

3

or pursue “new” experiments sensitive to LO couplings
PRIOR to NPDGamma

wrong sign
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of the new experiments listed in Table 4. We have noted that AL(~n + 3He ! 3H + p)
would be a particularly good choice.

3

or pursue “new” experiments sensitive to LO couplings
post NPDGamma

! +1.2⇥ 10�8

driven by 18F/
NPDGamma
comparison



Summary

• HPNC progress over the past three decades has until recently been slow
• only a few new experimental results
• idea of selecting two LO couplings — isoscalar and      — ran into the

          problem of a small
 
• now have NPDGamma, n+3He

• The switch to the large-Nc LO couplings               attractive
• based on reasonable theoretical arguments
• consistent with previous work in that the iso scalar coupling is about

          1.5 DDH best value, consistent with DDH broad reasonable range
•      become NLO, exceeds DDH reasonable range
• more careful analysis needed, but the nonzero NPDGamma result

          appears to wash out most of the large-Nc hierarchy
• more careful analysis needed, but NPDGamma/18F constraint then

          significantly impacts n+3He 
  
• This progress coincides with the advent of high flux cold neutron beams

• so one can envision a period of rapid progress   

h1
⇡

h1
⇡

⇤+
0 , ⇤2

⇤2


